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ABSTRACT

In this paper we show that when accurate non-linear force free field (NLFFF) models

are analyzed together with high resolution magnetohydrodynamic (MHD) simulations,

we can determine the physical causes for the CME eruption on 12-Feb-2007. We compare

the geometrical and topological properties of the three-dimensional magnetic fields given

by both methods in their pre-eruptive phases. We arrive at a consistent picture for the

evolution and eruption of the sigmoid. Both the MHD simulation and the observed

magnetic field evolution show that flux cancellation plays an important role in building

the flux rope. We compute the squashing factor, Q, in different horizontal maps in

the domains. The main shape of the quasi-separatrix layers (QSLs), are very similar

between the NLFFF and MHD models. The main QSLs lie on the edge of the flux

rope. While the QSLs in the NLFFF model are more complex due to the intrinsic large

complexity in the field, the QSLs in the MHD model are smooth and possess lower

maximum value of Q. In addition, we demonstrate the existence of hyperbolic flux

tubes (HFTs) in both models in vertical cross sections of Q. The main HFT, located

under the twisted flux rope in both models, is identified as the most probable site for

reconnection. We also show that there are electric current concentrations coinciding

with the main QSLs. Finally, we perform torus instability analysis and show that a

combination between reconnection at the HFT and the resulting expansion of the flux

rope into the torus instability domain is the cause of the CME in both models.

Subject headings: Sun:magnetic fields — Sun: sigmoid — Sun: flares — Sun: X-rays

1. Introduction

Solar eruptions occur in magnetically dominated environments, where free energy can be stored

in non-potential magnetic field configurations, characterized by large amounts of shear and/or twist
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of the magnetic field lines. Some of the characteristic observational features that precede coronal

mass ejections (CMEs) or flares are regions composed of S- and J-shaped loops when observed in

soft X-ray images. Rust & Kumar (1996) term these regions sigmoids, owing to their specific S

or inverted-S shape. The community interest in sigmoid regions increased due to the studies of

Canfield et al. (1999, 2007) which showed that the majority (68%) of solar eruptions appear in

regions that develop a characteristic S-shape for at least some time of their pre-eruption evolution.

Sigmoids, and associated filaments, lie along the polarity inversion line (PIL) of bipolar regions,

which is achieved by the large amount of shear present in these regions (e.g. van Ballegooijen &

Martens 1989; Green et al. 2011). By comparing the loops from potential field extrapolations with

the characteristic shape of observed coronal loops in flaring active regions one notices that these

loops are much more sheared and twisted than the potential ones (Bobra et al. 2008). Therefore, the

best way to describe these long S- and J-shaped loops that lie in the core of the sigmoid, together

with the more potential loops that overlay them, is to approximate the field as being non-linear

force-free field (NLFFF, ∇×B(r) ≈ α(r)B(r)), which allows different field lines to have different

values of the torsion parameter α(r). The other important condition for using NLFFF is that the

field must evolve slowly compared to the Alfvén crossing time.

A typical NLFFF magnetic configuration which describes the observed shape of sigmoids is a

weakly twisted flux rope embedded in a potential arcade. Magnetic flux ropes have frequently been

associated with sigmoid regions (e.g. Gibson et al. 2004; Gibson & Fan 2006; Green et al. 2007,

2011; Tripathi et al. 2009). The analytical prototype of such a magnetic configuration comes from

Titov & Démoulin (1999, hereafter TD). The TD model consists of a twisted flux rope (section of a

torus) which is held down by the potential field of two submerged magnetic sources that lie on the

perpendicular axis of the torus. This configuration has been used by multiple MHD simulations

and models that explore the pre-eruptive behavior of active regions (e.g. Roussev et al. 2003; Török

& Kliem 2003; Török et al. 2004, 2011).

Although, sigmoids are generally composed of flux ropes, different processes can explain their

structure and the eruptive mechanism that leads to their destabilization. The formation of mag-

netic flux ropes at PILs is a natural consequence of magnetic flux emergence, transport processes,

and cancellation at the solar surface. One method for producing flux ropes relies on magnetic flux

emergence of a twisted flux rope originating from the convection zone and rising through the pho-

tosphere (e.g. Magara & Longcope 2001; Fan & Gibson 2004, 2006; Gibson et al. 2004; Archontis

et al. 2009; Hood et al. 2011). In these models, as the flux rope emerges a filamentary current sheet

is formed. When one integrates this current along the line of sight the region appears sigmoidal in

simulated X-rays. However, claimed observations of direct emergence are open to multiple inter-

pretations (Vargas Domı́nguez et al. 2011). The studies which performed magnetic reconstruction

of emerging flux regions have never reported fully emerged twisted structures (Canou et al. 2009;

Guo et al. 2010). In numerical models the flux emergence tends to develop too fast to account for

the observations. Although the subsequent formation of a twisted flux rope in the corona is possi-

ble (Manchester et al. 2004; MacTaggart & Hood 2009; Archontis & Hood 2010), these numerical
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models have not found any stable equilibrium for these flux rope. Thus, flux emergence models

may be more suitable for describing transient filaments and sigmoids (Lim et al. 2010).

The other main type of model for the formation of twisted flux ropes is based on the cancellation

of magnetic flux at the polarity inversion line (PIL) and/or shearing of arcade field line (van

Ballegooijen & Martens 1989; van Ballegooijen 1999; Amari et al. 2000; Mackay et al. 2000; Mackay

& van Ballegooijen 2001, 2005; Mackay & van Ballegooijen 2006; Aulanier et al. 2005a, 2006, 2010;

DeVore et al. 2005; Yeates et al. 2007, 2008). These models use shearing or twisting motions of

initially potential arcade-like or multipolar fields and flux cancellation to create different types of

twisted flux ropes which can be stable or eruptive. Such models are able to store energy in sigmoidal

structures for long periods of time - days to weeks (Amari et al. 2003). Moreover, many of the

observed eruptions appear in decaying active regions (e.g. Démoulin et al. 2002; van Driel-Gesztelyi

et al. 2003; Green & Kliem 2009) which are past the flux emergence phase but nonetheless seem to

be able to build prominent flux ropes and spawn eruptions. Hence, one interesting question is how

the sigmoids develop and what factors bring them eventually over the threshold for instability.

The question of which instabilities are responsible for letting the CME develop is a long-

standing problem in solar physics. Depending on the particular model, the conditions that facilitate

the eruptions also vary. For a review of flux rope and CME initiation models one can turn to Forbes

et al. (2006) and Green et al. (2007). Some models employ the development of kink instability in

highly twisted flux ropes (e.g. Fan & Gibson 2004; Kliem et al. 2004; Török & Kliem 2005). The

kinking and rotating motions in erupting filaments have been observed numerous times, but in

many cases the magnetic configuration does not possess enough twist to become kink unstable (e.g.

Gilbert et al. 2007). In addition a flux rope rotation is not necessarily due to a kink (Isenberg &

Forbes 2007). Although many MHD simulations focus on kink unstable flux ropes as a mechanism

for eruption, a series of papers (Bobra et al. 2008; Savcheva & van Ballegooijen 2009; Su et al.

2009a,b, 2011) show that the flux ropes that best match the observations are less twisted, possessing

1-1.5 turns, which is well below the threshold for the kink instability of 1.75 turns (3π) as derived

by Török et al. (2004). This limit value is even higher with increasing aspect ratio of the flux rope

(Török et al. 2004).

On the other hand, continuous flux cancellation can weaken the potential arcade that holds

down the flux rope or cause torus instability of an elevated flux rope (e.g. Kliem & Török 2006;

Démoulin & Aulanier 2010). The torus instability in different flux rope configurations was inten-

sively studied by Kliem & Török (2006) and Démoulin & Aulanier (2010). They showed that if

the potential arcade, which restricts the flux rope from rising, falls off with height with a decay

index ranging from 1.1 for thick flux ropes to 1.5 for thin ones, the arcade is no longer able to

restrain the rising flux rope. Alternatively, loss of equilibrium may also be achieved by explosive

reconnection in current sheets connected to the flux rope as indicated by Archontis et al. (2009).

It is probable that more than one of these mechanisms is involved in bringing the flux rope to the

edge of stability and producing a CME. Hence, it is important to concentrate on identifying the

driver(s) of the eruption in sigmoidal regions.
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Whatever its exact role in driving the eruption, magnetic reconnection plays a key role during

the flare. Part of the free energy stored in the field can be released in an explosive manner by

reconnection and power a flare, eventually relaxing the system to the minimum energy state given

by the post-eruption magnetic helicity content (Low 2001). In 2D experiments (Lin & Forbes

2000) reconnection allows a CME to go beyond another high altitude equilibrium position and

potentially lose equilibrium. To determine the precise action and consequence of reconnection on

the evolution of erupting systems it is important to identify the location of the reconnection sites,

their properties, and whether they can sustain fast enough reconnection to allow full eruption

(Lin & Forbes 2000). The presence of high current densities is viewed as one of the necessary

conditions which facilitate the reorganization of the magnetic field in the process of reconnection.

Consequently, identifying strong current sheets, or other proxies for reconnection, in models of

observed magnetic field configurations is extremely useful for forecasting solar eruptions.

In the line-tied solar corona, thin and intense current sheets are most likely to accumulate

where the magnetic field experiences drastic change in connectivity, when appropriate footpoint

motions occur (Low & Wolfson 1988; Priest & Forbes 2002). Magnetic topology studies have

aimed at identifying structures which present connectivity discontinuity in the magnetic volume

(Longcope 2005). The most prominent such features, at which the field line linkage is discontinuous,

are separatrices such as the ones generated by magnetic null points, which can exist in 3D only

under special field symmetries (Hesse & Schindler 1988). However, Démoulin et al. (1994) and

Démoulin et al. (1997) showed that many of the erupting regions do not posses these special

topologies. Démoulin et al. (1996a) generalized the concept of separatrices by introducing Quasi-

Separatrix Layers (QSL), which are 3D structures where the field line linkage experiences dramatic

change but nonetheless stays continuous. The strength of the connectivity gradients, and of the

QSLs, is quantified by the squashing factor Q (defined by Titov et al. 2002; Titov 2007). As with

separatrices, QSLs are preferential sites for the build-up of current sheets (Milano et al. 1999;

Galsgaard et al. 2003; Aulanier et al. 2005b; Buechner 2006; Pariat et al. 2006; Masson et al. 2009;

Wilmot-Smith et al. 2009a,b, 2010; Effenberger et al. 2011). Démoulin et al. (1996a) proposed that

for reconnection to take place Q must be many orders of magnitude larger than the average in the

domain. Besides separatrices (Q → ∞), a part of the volume where Q is highest in a flux rope

configuration is the Hyperbolic Flux Tube (HFT; Titov 2007). The HFT mimics an X-line-type

configuration where the magnetic field volume is separated in four domains but the field line linkage

is continuous across them. In a cross section of Q, the HFT has a characteristic 4-way-saddle shape

and hence the name of the feature. The outstanding question is what is the characteristic topology

of sigmoids in the moments preceding the eruption. If one can identify an HFT for example, is such

a feature a robust tracer for probable reconnection sites in different magnetic field configurations?

In order to study the above questions, models of the 3D magnetic field structure are required.

This can be achieved by two main categories of methods: static magnetic field models and ex-

trapolations, or dynamic MHD simulations. Although almost all dynamical MHD simulations are

based on idealized magnetic field flux distributions and are not particularly constrained by specific
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observations, they aim at qualitatively reproducing observed situations and emulating solar erup-

tions. In this process one has the advantage to observe the characteristics of the eruptions and how

the magnetic configuration and plasma properties evolve in time, e.g. current-sheet geometry and

locations, conditions for magnetic and plasma instabilities, etc. On the other hand, the data-driven

and observationally-constrained field extrapolations and NLFFF models are static or quasi-static.

In this process separate independent observations of the same region need to be analyzed to build

a satisfactory picture of the 3D magnetic field structure of a particular region and provide only

basic insight on the conditions for an eruption. Magnetic field extrapolations and models have the

advantage that they use observed photospheric magnetic flux distributions to constrain the coronal

magnetic field.

As mentioned, in the case of sigmoids it is prudent to concentrate only on NLFFF models which

are the only ones that can simultaneously describe the variety of observed loops properly - ranging

from the sheared and twisted one in the core of the flux rope (|α| 6= 0) to the overlaying potential

arcade (α = 0). NLFFF extrapolations can be constructed from photospheric vector magnetogram

data (see review of Schrijver et al. 2008). However, in many cases vector data is not available, so

one needs to use line-of-sight (LoS) magnetogram data. In Savcheva & van Ballegooijen (2009)

and Savcheva et al. (2012) the flux rope insertion method (van Ballegooijen 2004) was used to

model the magnetic field structure and topology of a long lasting sigmoid over its lifetime. The

same method was also employed to model active regions and filaments (Bobra et al. 2008; Su et al.

2009a,b, 2011).

NLFFF models and MHD simulations are two very different methods for studying the evolution

and pre-eruption behavior of sigmoids. However, insight can be gained from the comparison between

static data-driven NLFFF models and dynamical MHD simulations. There are a few points of

comparison that can be made to ensure a consistent picture between a method that allows just

a glimpse at the actual magnetic field structure and one that can follow the whole evolution of

the sigmoid in time until its eruption. Reaching a consensus about the general field topology and

current distributions in the two methods makes sure that the flux rope is defined in the same way

in the magnetic field volume. It is equally important to compare the mechanisms through which

the sigmoid evolves and finally produces an eruption.

In the present paper we answer the above stated questions by a comparison between the MHD

simulation of Aulanier et al. (2010, ATDD10 hereafter) and the NLFFF model of Savcheva et al.

(2012, SBD12 hereafter). The comparison is made at several levels and we find numerous similarities

despite the intrinsic vast differences in the two model setups. Both models contain a weakly twisted

flux rope, which is our starting point for the comparison. We address the flux cancellation idea

for building the flux rope and weakening the potential arcade in time. We compare the current

and squashing factor distributions in the two flux ropes and identify common topological features,

including some that identify the preeruption configuration of the system. We also identify common

factors that lead to the development of torus instability and the subsequent CME. For the purpose

of this comparison we single out one snapshot of the dynamical MHD simulation that precedes
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the eruption, and one static NLFFF model of 1 hour before the actual flare and CME in the

observed sigmoid on Feb 12, 2007. The paper is organized as follows: In Section 2 we describe the

observations of the region, we give a brief overview of how the NLFFF model is setup and the basic

processes that underlay the dynamical MHD simulation. In Section 3 we give a description of the

high-resolution calculation of bald patches and Q. In Section 4, we present our results of the main

comparison points. In Section 5 we give our conclusions and discussion of the results.

2. The Tools

2.1. Observations

In the period 2007 Feb 6-12, the X-ray Telescope (XRT Golub et al. 2007) on Hinode observed

the development and eruption of a long-lasting coronal sigmoid (McKenzie & Canfield 2008). XRT

obtained high-cadence (∼30 s), high-resolution (1′′/pixel) partial-disk (384′′ × 384′′) images in the

thin-Aluminum/polyimide filter for most of the period of the evolution of the region. The rest of

the time the development of the sigmoid was tracked using full-disk synoptic images. The region

is observed to evolve from a sheared arcade to a-more-and-more-pronounced S-shaped structure.

The region produced two B-class flares followed by CMEs on Feb 7, and 12. While Savcheva & van

Ballegooijen (2009) and SBD12 analyzed observations of the whole period, here we concentrate only

on the synoptic observation taken at 06:41UT on Feb 12 preceding the flare at 7:40UT. In addition

we use STEREO/EUVI (Wuelser et al. 2004) 171Å and 195Å full-disk images to determine the

location of the dark EUV filament which constrains the path of the flux rope. In Figure 1 we have

shown an XRT image of the sigmoid at 06:41UT and the corresponding magnetic field structure as

given by the best-fit NLFFF model corresponding to this observation (see Section 2.2).

The radial photospheric magnetic flux distribution for the whole period is provided by full-

disk 96-minute SoHO/MDI (Scherrer et al. 1995) magnetograms. In addition, the low-resolution

Carrington-rotation 2053 synoptic magnetogram, from SOLIS (Wampler 2002) is used to provide

the context for the higher resolution MDI partial field of view centered at the sigmoid. We estimate

the magnetic flux based on a 192′′ × 192′′ region centered on the sigmoid, just encompassing the

main flux distribution. We smooth the magnetograms with Gaussian filter with σ = 3 MDI pixels

to reduce slightly the variation in the noise level between the different magnetograms. The radial

field strength is corrected for the longitudinal position of the region by dividing by cos θ, where θ is

the heliocentric angle of the region. Such measurements are performed every 12 hours during the

whole period and extending one day after the eruption. A plot of the positive magnetic flux versus

time is given in Figure 2. The flux imbalance in the region is a few 1020 Mx depending on the

day. Flux cancellation is observed over the week-long evolution of the region as two semi-detached

bipolar regions come together to ultimately form a pronounced sigmoidal structure on Feb 11.

After the eruption on Feb 12 the flux stays constant within the scatter caused by the noise in the

magnetograms. Let us note that Savcheva & van Ballegooijen (2009) incorrectly stated that the
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cos θ factor had been taken into account while it was not. Hence, we could not definitively measure

flux cancellation in this earlier study.

2.2. The NLFFF Model

In this work we exploited the NLFFF model derived in SBD12 at 06:41UT on Feb 12. This

model, described in detail in SBD12, is based on the flux rope insertion method (van Ballegooijen

2004). The time of the model is chosen such that it precedes the eruption with about one hour.

We aim at using this model to look for a pre-eruptive configuration and compare it to the similar

snapshot from the MHD simulation. In a nutshell, the method consists of a few steps. A global

potential field source surface extrapolation (source surface at 2R⊙) is carried out based on the

synoptic Carrington magnetogram. This potential field extrapolation provides the side boundary

conditions for a high resolution extrapolation based on the partial MDI magnetogram. A modified

potential field extrapolation is performed in the region observed at high spatial resolution. The

field is modified by the presence of two magnetic sources at the locations where the flux rope is to

be anchored in the photosphere. A cavity with zero magnetic field is then created near the PIL,

and the flux rope is inserted into it. The transverse current at the photosphere is enforced to be

zero, so the flux rope cannot be allowed to touch the photosphere since the current in the flux rope

is nonzero. This condition still allows the flux rope to be anchored to the photosphere with nonzero

vertical current. Hence a small boundary upflow is applied in the first couple of cells of the model

in order not to let the flux rope relax down to the lower boundary. This induces various artefacts

in the current and magnetic field distributions associated with the flux rope, so we generally do not

use the lowest two layers of the model. The flux rope is characterized by its path, following the dark

EUV filament observed in STEREO/EUVI images, and a combination of axial and poloidal fluxes.

This magnetic field configuration is not in equilibrium. Since sigmoids live in the low-β corona,

one can neglect the gas pressure, so in order to be in equilibrium, the system must be brought

to a force-free state, where the current is parallel to the magnetic field. We use 60 000 iterations

of a magneto-frictional method (van Ballegooijen 2004) to relax the magnetic configuration to a

force-free state. We require that the force-free parameter α is nearly constant (to about 10%) along

field lines, with the strongest deviations near the footpoints. When an equilibrium is reached, the

magnetic tension in the potential arcade just balances the magnetic pressure related to the flux

rope.

The high-resolution model domain is wedge shaped with size 384×384×50 cells. The resolution

in the center of the lower base of the domain is 0.0015R⊙ per cell. There are two more layers of

successively lower resolution in height allowing the model to reach the source surface and still

retain high resolution in the part of the domain where the flux rope is located. In order to obtain

the best fit between the model and the observations, we ran a grid of 20 different initial sets of

parameters, with different combination of axial and poloidal fluxes, ranging from 1− 7× 1020 Mx

and 0.05−1×1011 Mxcm−1 in axial and poloidal flux respectively. Each of these models is matched
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to the XRT image at 06:41UT on Feb 12 by comparing field lines from the model along the line of

sight to observed X-ray loops in the XRT image. A best fit model is issued this way. For the model

used in this analysis the axial and poloidal fluxes are 5×1020 Mx and 5×1010 Mxcm−1 respectively.

A main advantage of the flux rope insertion method is that the fitting process ensures that the

obtained magnetic field structure closely represents the observed X-ray emission. Representative

field lines traced from the best fit model are shown in the right panel of Figure 1. One can notice

the presence of distinct S-shaped (green) and J-shaped (yellow) field lines as well as some field lines

that belong to the potential arcade (blue) or lie under the flux rope (red).

As our topological analysis (c.f. Section 3) is performed in cartesian coordinates we have

transformed the original spherical domain. For simplicity, and to avoid performing imprecise in-

terpolations, we have directly assumed that the original domain was cartesian. The longitudinal,

latitudinal and radial axes were assumed to be exactly equivalent respectively to the x, y and z

axes while the three spherical components of the magnetic field were directly equalled to the three

components in the corresponding cartesian coordinates. In the horizontal direction, as the latitude

and longitude are taken as-is, the grid is slightly non-uniform in x and y with pixel size ranging from

0.97 Mm to 1.04 Mm. In the vertical direction, we use the same non uniform grid as in the spherical

domain, with a minimum grid size of 1.04 Mm. At higher altitude (z > 54 Mm), as we need to

work on a structured cartesian grid, we linearly interpolate the missing values of the original lower

resolution spherical grid. We eventually end up with a mesh of 213× 213× 73 pixels representing a

cartesian domain of 221 Mm×215 Mm×122 Mm. The actual QSL computations (c.f. Section 3.2)

of the NLFFF model were done on a subdomain no bigger than 214 Mm × 214 Mm × 70 Mm.

At this altitude the resolution in the vertical grid is equal to 2.3 Mm. The hypothesis that the

cartesian domain is equivalent to the spherical one corresponds to a monotonous and homotetic

transformation. The geometry of the domain changes as a portion of a spherical shell becomes a

parallelepiped. It implies that the real domain would be larger at the top. The effect is that, at

higher altitude, the field lines would diverge slightly more than what we see in the plots hereafter.

At a height of 122 Mm, for a half width of 107 Mm the horizontal error is about 17 Mm, hence the

highest field lines would expand by 16%.

We have not performed any advanced remapping as it was not necessary given the type of

the computation and the volume in which they were done. Indeed, as the bald-patch analysis is

based on the local curvature of the magnetic field lines (c.f. Section 3.1) the results are strictly

equivalent as the difference on the divergence in both coordinate systems does not modify the sign

of the B⊥ · ∇⊥Bz operator.

The QSL computation would only be changed in a minor way. A difference would appear in

the geometry of the distribution of Q. The QSL maps presented hereafter (c.f.Section 4) would

only be slightly distorted but only linearly, e.g. the Q map at z = 46 Mm would be 5% bigger.

Similarly the vertical cut in the NLFFF model should appear as a section of a disk instead of a

rectangle. In addition, because the components of the magnetic field are equalled and the heights

are kept identical, only the horizontal distances are transformed. It implies a small difference in the
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vertical magnetic flux. Some small variations are thus likely induced when performing the field line

integration and therefore in the mapping. As the QSL computation is indeed based on connectivity

gradients and since the difference on field line connectivity induced by the transformation is mostly

linear, we believe that the variations in Q between the original data set and the transformed one

are only minor. We indeed observe that the magnetic field configuration in the transformed data

set present very little variations relative to the original one studied in SBD12. In addition, as the

currents are computed relative to this transformed magnetic field, the comparison done in Section 4

is done consistently. Overall, if our study had been performed on the original spherical data, we

believe that only very minor differences would be observed that would not change the results of

our study.

2.3. The MHD Simulation

The NLFFF model is compared with the output of the MHD simulation presented in ATDD10

of an eruption in a decaying-like active region. The zero-β Cartesian 3D MHD numerical code

is described in detail in Aulanier et al. (2005a). It solves the basic MHD equations of magnetic

induction, mass and momentum conservation using explicit viscosity and magnetic diffusion tensors.

The simulation is performed on a highly non-uniform mesh with line-tied lower boundary condition

and five open boundaries.

In ATDD10, the simulation is initiated by a potential field configuration created by two un-

balanced smooth magnetic flux sources (see Figure 3, top). The flux imbalance in the simulation

creates an asymmetric magnetic configuration which is closer to the flux distributions in observed

active regions. Magnetic diffusion is explicitly applied at the photospheric bottom boundary, in

order to simulate the decay of the magnetic field: it results in a spreading of the two polarities and

a decrease of their peak intensity. This can be observed in Figure 3 by looking at the decreasing

number of isocontours of the vertical component of the field. This expansion leads to an apparent

converging flow of the magnetic flux at the PIL. Photospheric cancellation of the magnetic flux is

induced, reproducing the behavior observed in decaying active regions (Démoulin et al. 2002; van

Driel-Gesztelyi et al. 2003). In addition to the flux cancellation, horizontal sub-alfvénic shearing

flows are prescribed on each side of the PIL at the photospheric boundary: they appear as two

clockwise annular flows of different magnitudes for different strengths of the magnetic field (cf.

Figure 1 of ATDD10). These flows shear the magnetic field lines that are rooted between the mag-

netic polarities (see Figure 3). These motions, in combination with the flux cancellation, produce

an accumulation of twist, shear, and electric currents in a narrow volume close to the PIL. The

result is a quasi non-linear force-free field with sheared high current areas in the middle overlaid

by more potential field lines that are rooted farther from the PIL, which have a stabilizing effect

to the sheared arcade. In Figure 3 one can see three consecutive snapshots of the polarities and

some overlaid field lines for t = 0, 40 & 90 Alfvén times: it shows the progressive diffusion of the

polarities and the increase in the twist and shear of the field lines rooted close to the PIL.
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In terms of topology, the sheared arcade induces the formation of a Bald Patch (BP, Titov et al.

1993) after t = 23 Alfvén times. BPs are regions of the PIL where the field lines are concave up,

i.e. the field lines tangentially graze the photosphere while crossing the PIL in the inverse direction

of what a potential arcade would do. At this time the field lines are J-shaped and contribute to the

sigmoidal shape of the region. The separatrix surface associated with the BPs (called the BPSS),

surrounds the sheared field (as in Gibson et al. 2004; Gibson & Fan 2006; Archontis et al. 2009).

A current sheet spontaneously forms at the location of the BPSS due to the shearing footpoint

motions. Tether-cutting reconnection ensues at the BPSS, which transfers flux into the flux rope.

This leads to the rise of the flux rope and the formation of a strong (high Q) QSL. At t = 76 Alfvén

times, the BPSS completely disappears. This is different from the results of Archontis et al. (2009):

in their flux emergence simulation, as the flux rope rises in the solar atmosphere, the BPSS evolves

in a BP-BP separator. This type of separator line, which forms at the interface of two separatrix

surfaces of two distinct BP regions, had been identified as a possible topology for adequate choice

of parameters in the TD model (Titov & Démoulin 1999). In ATDD10, there is no more pure

separatrix surface in the domain. Finally the configuration develops an HFT. Reconnection at the

HFT between two J-shaped field lines creates longer S-shaped field lines.

In the present study we will focus on the topological configuration at time t = 90 Alfvén times.

The choice of this time is driven by the similarities with the structure of the AR in NLFFF model.

As discussed before, at this time no BPs are present. However, the configuration is still stable.

Stability analysis in ATDD10 showed that the system could reach a stable equilibrium for t ≤ 110

Alfvén times. In both the MHD simulation and in the NLFFF model, we picked a time preceding

the eruption, in which free energy has been accumulated, but which is still stable.

3. Topological Analysis

3.1. Bald Patches Calculation

Relative to the corona, the solar photosphere is an extremely dense and inert layer, which

is little influenced by coronal activity. Under the line-tied hypothesis, the dynamics of field line

footpoints in the photosphere is de-correlated. As mentioned, BPs are regions in the photosphere,

where the field is horizontal and the magnetic field lines are curved upward:

B · ∇Bz(z = 0;Bz = 0) ≥ 0 (1)

In the frame of coronal physics, the field line passing through a BP is anchored at the pho-

tospheric level at three points. A BP field line is thus a separator which separates the volume in

three connectivity domains. In the light of the line-tied hypothesis (which validity is discussed in

Grappin et al. 2008), BP field lines are associated with regions where thin currents sheets can easily

develop (Low & Wolfson 1988; Titov et al. 1993; Billinghurst et al. 1993; Pariat et al. 2009).
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BPs are typical structures associated with twisted flux ropes. In the TD model, BPs can be

found under the flux rope for certain parameters of the model (Titov & Démoulin 1999). BPs are

also observed in emerging flux simulations of flux ropes (Magara & Longcope 2001; Archontis et al.

2009, as discussed in Section 2.3). In the present study, no BPs are present in the MHD simulation

at the time studied (see discussion in ATDD10). For the NLFFF model, a large number of BPs are

presented in Figure 4, left panel. The BPs have been computed on a mesh of 4000× 4000 points in

the domain [225; 425] × [−225;−75]. The magnetic field is linearly interpolated on this grid. The

left panel of Figure 4 shows that an extremely large number of BPs are present at the photospheric

level. All of these BPs are very localized. They result from the high spatial-resolution observations

which highlight an important intermittence of the magnetic field distribution. In addition, the noise

level in the MDI magnetograms is on the order of 10G which can conceivably contribute to the

presence of short loops that appear as BPs in the photosphere. No extended BPs are observed, as

predicted by the TD model or as reported in Archontis et al. (2009). This is because the flux rope

in the NLFFF model, as in the MHD simulation is located above the photospheric level. Unlike

the NLFFF rope, the MHD simulation does not enforce zero transverse current at the photosphere.

The flux rope is elevated above the photospheric level due to its previous quasi-static evolution.

The flux rope in the NLFFF model is also significantly elevated, especially in its central part,

as a consequence of the relaxation process and not because of the imposed boundary condition.

Nevertheless, it is possible to determine the position of the dips associated with the flux rope in the

NLFFF model by computing equation (1) at Z = 6 Mm (see Figure 4). Long extended dip regions

are present, above and roughly-aligned with the photospheric PIL, tracing the upward-bent section

of the twisted flux rope.

3.2. Quasi-Separatrix Layers Calculation

Given that no extended BPs are observed at the photospheric level, one wonders whether or not

there is another topological structure which characterizes the magnetic field in both the observed

and numerical data. We therefore explore if QSLs are present.

QSLs are defined as regions of the magnetic volume where the field line connectivity experiences

dramatic, but continuous, variations (Démoulin et al. 1996a). The location of the QSL can be

determined by the estimation of the squashing factor, Q, which is defined as the square of the norm

of the Jacobian matrix of the mapping of the field lines from one foot point to the other, divided by

the absolute value of the determinant of this Jacobian matrix (Titov et al. 2002; Pariat & Démoulin

2012). The squashing degree is invariant along a field line. QSLs are usually defined as regions

where Q is very large, usually ≫ 104. In order to compute Q in a domain it is necessary to estimate

the elements of the Jacobian matrix of the mapping of the field lines contained in that domain. Q

is therefore defined relative to the choice of two surface boundaries, one for each footpoint of the

field lines.

A QSL, similarly to a separatrix, divides the coronal domain in quasi-connectivity domains.
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The eventual distinct evolution of the field in each of these domains can induce very localized shear

of the magnetic field around the QSL and facilitate the build-up of intense currents at the QSLs

(c.f. Section 1). In a flux rope magnetic configuration, in the absence of true separatrices, the

generalized separatrix with largest value of Q is the HFT, which is located under the flux rope

and above the photosphere. The HFT separates the magnetic volume into four quasi-connectivity

domains and presents a preferential site for build-up of current sheets (Démoulin et al. 1996b; Titov

2007).

For the coronal field, in which field lines are anchored at the photosphere, the computation of

Q is relative to this natural boundary. Traditionally Q has been derived at this layer. However,

QSLs are 3D structures and it is interesting to study the distribution of Q in the whole 3D volume.

The best way to represent the complex structures of the 3D QSL is to compute Q on 2D section

(Q-maps) of the 3D volume. In order to do so, Pariat & Démoulin (2012) studied several methods

and analytically derived the most proper formulation of Q for such Q-maps. In the present study

(see Section 4) we follow their methodology and used Equation (20) of Pariat & Démoulin (2012)

to determine Q in vertical cuts across the domain.

The computation of the squashing factor in the vertical cuts of the domain is done with the

reference boundary at Z = 0, i.e. using the bottom boundaries of both models. The actual

computation is done in two steps. First, a squared mesh of 513 × 513 points, corresponding to a

size of 70 × 70 Mm (resp. 1.4 × 1.4 spatial units) is defined for the NLFFF model (resp. MHD

simulation), over which Q is computed at each point. For the zoomed-in maps the number of points

is 257×257 while the size is 20×20 Mm (resp. 0.4×0.4 spatial units). Even though the resolution

is ∼ 78 km (resp. ∼ 1.56 × 10−3 spatial units) for these plots, it is sufficient to correctly evaluate

the value of Q in the core of the HFT.

A convergence procedure is then performed similar to the one presented in Section 3.2 of

Aulanier et al. (2005b). In places where Q is highest, it is re-evaluated at each point by increasing

the resolution by a factor of 2 for the next computation of Q, i.e. dividing by 2 the distance, δ, at

which neighboring field lines are traced (see Pariat & Démoulin 2012). This computation is done

in neighboring points of the mesh and only the largest values are kept. If the relative difference

with the previous value is smaller than 10% the convergence process is stopped. Otherwise, the

computation is recursively done by increasing the resolution by 2 each time. This procedure can

be done up to 6 (resp. 4) times for the NLFFF extrapolation (resp. MHD simulation). This allows

us to precisely determine the highest value of Q at each QSL, and especially in the HFT.

The same two-step procedure is performed to produce square horizontal Q maps at different

heights above the photosphere, keeping the same reference boundary. For the initial mesh 423×423

(resp. 513 × 513) points are used with a size of 214× 214 Mm (resp. 10.2 × 10.2 spatial units) for

the NLFFF extrapolation (resp. MHD simulation). While the reference boundary for the MHD

model is the bottom, we have not used the photospheric boundary in the NLFFF reconstruction.

Indeed, in the studied region, relatively low magnetic field intensities are presents. Hence, there is
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a very large number of small scale polarities which do not necessarily extend far up in the solar

atmosphere. A very large number of BPs are indeed present (see Section 3.1). These nests of QSLs

are an intrinsic consequence of the intermittency of the field. They can eventually play a role in

generating multiple small scale current sheets and participate to the coronal heating mechanism.

However, when one wants to focus on the QSLs at higher altitude, these low-altitude QSLs

represent a challenge for the computation of Q. If one uses the photospheric boundary as a reference

boundary, these small scale polarities dominate the computation of Q. Most of this magnetic flux

does not reach the solar corona. In other words, when computing Q maps in the corona, at high

altitude, most of the field lines are anchored to a relatively small fraction of the photosphere.

This can lead to a poorer evaluation of Q, in addition of being time consuming. It becomes more

difficult to determine the localization of the QSL in the coronal domain. We have thus used the

boundary at Z = 2.089 Mm (2 pixels above the bottom boundary) as the reference boundary

for the computation of Q. At this layer, which corresponds to the top of the chromosphere, the

distribution of the magnetic field is far less intermittent, i.e. smoother while preserving most of its

complexity.

Note that Q has traditionally been computed for smooth fields derived from analytical fields

or numerical fields. In the few observational examples (e.g. Démoulin et al. 1997; Mandrini et al.

2006; Chandra et al. 2011) where Q has been computed, the resolution of the magnetograms used

was usually much poorer than in the present case. It is the first time that such a QSL computation

has been done at this level of resolution.

In SBD12 we showed a topological analysis of the same sigmoid with a QSL calculation reaching

only small values of Q for the whole evolution of the region. Here, this analysis is repeated with

the best-fit NLFFF model for 06:41UT, Feb 12 with values of Q reaching 1022, using the technique

descried in Section 2.3. In this calculation the main QSLs that are associated with the flux rope

reach values for Q of 1010 and higher, thus containing values that can facilitate reconnection

according to Démoulin et al. (1996a).

4. Comparison of the MHD and NLFFF Models

In this study we attempt to answer the questions identified in Section 1. By comparing the

NLFFF model and the MHD simulation we aim at composing a consistent picture of the formation,

evolution, and stability of the sigmoid. We look at what processes are important for the formation

of the region. We identify specific topologies that characterize the observed and simulated magnetic

configurations and pinpoint probable sites for magnetic reconnection. In addition, we look at the

instability that can be in part responsible for the eruption of the two sigmoids and finally facilitates

the CMEs.
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4.1. Flux Cancellation and the Structure of the Flux Rope

As mentioned, the MHD simulation and the NLFFF model are built upon very different ide-

ologies. While the MHD model is dynamic and follows the development and the eruption of the

flux rope over time, the NLFFF model is static and can provide snapshots of the evolution of the

sigmoidal region up until its eruption on Feb 12. The process in which the flux rope is developed is

intrinsically different. The MHD simulation builds the flux rope dynamically from shearing an ini-

tially potential field while the NLFFF model is constructed via the insertion of an explicit flux rope

in a potential field. Thus, in the MHD simulation the magnetic field evolves in the pre-eruptive

phase as a whole generating a sequence of quasi-force-free state while in the NLFFF model the

custom-inserted flux rope is relaxed to a force-free states, in the process of which it reaches an

equilibrium with the overlaying potential arcade.

Although the NLFFF model is static, we infer that the flux rope in reality is most probably

developed in the process of flux cancellation at the PIL following the cartoon of van Ballegooijen &

Martens (1989). The initial stages of the sigmoid development take place while two neighbouring

bipolar regions come together at an angle as discussed in the Savcheva & van Ballegooijen (2009).

In this process the magnetic field is subject to flux cancellation and relative shearing motion of the

two semi-detached pairs of polarities. In this sense the actual evolution of the magnetic flux in the

XRT sigmoid is similar to that in the MHD simulation. The flux cancellation that is observed in

the region is about 50% while the amount of cancelled flux in the MHD simulation is only about

10%. A possibly substantial difference in the behavior of the two systems comes from the type of

shearing motion - the shearing motion in the MHD simulation is provided by the rotation of the

two polarities as described in Section 2.2, while the shearing motion in the observed magnetograms

come from the relative linear motion along the PIL.

Different types of field lines are present in both the NLFFF reconstruction and in the MHD

simulation. Both models share the same morphological structures of the magnetic field despite

their distinct origin. Using the QSLs computation we will show in Section 4.2 that these field lines

belong to different quasi-connectivity domains of the respective model, and that they have the same

topological organization. As discussed by Savcheva & van Ballegooijen (2009), at 06:41 UT, before

the eruption, both S- and J-shaped field lines are present in the XRT images. The S-shaped field

lines, drawn in green in Figure 5 lie in the core of the flux rope and traverse its whole length. In

the right panel of Figure 4 we have shown the dips in the S-shaped field lines at height of 6 Mm

above the photosphere. The J-shaped field lines drawn in yellow (Figure 5), start in the elbows

of the sigmoid and connect back to the photosphere under the middle part of the flux rope. In

both models, potential-arcade-like field lines, plotted in cyan, are located above the flux ropes. The

tension of these curved field lines likely help to stabilize the twisted flux rope. Finally, under the

flux rope there are short field lines, represented in red in Figure 5.

Owing to the different conditions for the formation of the sheared and twisted field in the two

models, the flux rope in the NLFFF model is qualitatively much wider than the one in the MHD
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simulation. The flux contained in the NLFFF flux rope is 20% of the total flux in the region. In this

case we can make such an estimate because the flux rope is inserted separately into the potential

field. Due to the nature of the magnetofriction, however, the initial flux is slightly reduced due to

reconnection during the relaxation. Therefore, we only provide the initial fluxes to describe the

flux rope. Unfortunately, it is difficult to make the same estimate for the flux rope in the MHD

simulation since the flux rope is dynamically built from the initial potential field. In addition,

there is no strict topological boundary, e.g. a separatrix surface, between the simulation flux rope

and its surrounding. As we will see in the next section, the twisted flux rope is separated from its

environment by a QSL of finite width. This QSL does not even define a completely closed area in

cross section (similarly to the QSL of the TD flux rope in Figure 5 of Titov 2007). It is therefore not

possible to easily bound the flux rope in the MHD simulation and hence quantitatively compute its

flux. Therefore, we can be only qualitative in this discussion. The flux rope in the MHD simulation

is much thinner relative to its length than the one in the NLFFF model. The difference in the

aspect ratios of the two flux ropes can be seen in Figure 5 - the twisted and sheared field lines in

the MHD simulation are clustered much closer to the PIL than in the NLFFF model. This is mostly

due to the fact that the field experiences the largest shear in a thin layer around the PIL due to

the distribution in the shearing velocity flow. The substantially larger flux cancellation extending

over a large area in the data lead to the building-up of a thicker flux rope.

4.2. QSLs

The horizontal distribution of Log10 Q at four different heights are presented in Figure 6 for

the NLFFF model, the MHD simulation, and a sample TD flux rope. The TD model has been

constructed with the following normalized parameters: R = 2, a = 0.6, d = 1, |L| = 1, and |q| = 4,

I0 = 2, giving a configuration with a twist of Nt = 4/3 in the domain where R and a are the large

and small radius of the torus, d and q are the depth below the photospheric plane (z = 0) and the

magnitude of the magnetic sources, L is half the horizontal distance between the sources, and I0 is

the current intensity of the line current, respectively (see Section 2.1 in Titov & Démoulin 1999).

In Figure 6, the upper panels are QSL maps at the reference level for the Q computation

(Z = 2 Mm for the NLFFF model, Z = 0 for the domain of the MHD model, and Z = 0.1 for the

TD model, see Section 3.2). The second row shows cuts at the HFT (Z = 3 Mm for the NLFFF,

Z = 0.1 for the MHD model, and Z = 0.2 for the TD model). The third row gives cuts in the

bottom part of the flux ropes (Z = 6 Mm for the NLFFF, Z = 0.3 for the MHD model, and Z = 0.3

for the TD model) and the last row represents cuts in the middle of the rope (Z = 26 Mm for the

NLFFF, Z = 0.6 for the MHD model, and Z = 0.8 for the TD model).

There are several very sharp QSLs from the NLFFF model that have values of Q above 1010,

while the MHD model displays only one relatively diffuse QSL with Q in the most part of 103−105.

Regions where the field lines are not closed, where they do not reach back the reference bottom

boundary, are given a value of 1, and hence appear uniformly pink in the figures. The complexity in
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the QSL map of the NLFFF model is intrinsic to the large amount of fragmentation in the observed

photospheric flux distribution, while the field in the MHD simulation is created by two smooth

extended polarities. Hence, one expects many small QSLs between the separate flux elements

composing the real photospheric distribution while in the diffuse polarities one can transition more

smoothly between neighbouring field lines. This is even more apparent in the QSL maps presented

in SBD12, that are much lower resolution in Q. The separate flux elements in the magnetogram

have sharp edges relative to the background field while the idealized polarities blend smoothly into

the background which leads to sharp QSLs in the NLFFF model and much more diffuse ones in the

MHD simulation. The complexity in the QSL maps decreases with increasing height - from the top

to the bottom panel in the left column of Figure 6. This property of the QSL maps for different

heights in the corona was discussed in SBD12 and it reflects the decreasing level of fragmentation

of the magnetic field distribution in height, which becomes progressively smoother.

For the NLFFF model, at Z = 26 Mm (see Figure 6, lower left panel) the most striking QSL

is continuous and encircles an S-shaped cavity filled with lower Q values. This QSL highlights

the difference of connectivity between the twisted flux rope (inside the S) and the potential like

arcade. While the green field lines of Figure 5, left panels, lie inside this QSL, the blue field lines

pass through the surrounding region. At lower altitude (e.g. Z = 6 Mm) while the S-shaped QSL

is still present, the distance between the two sides of the QSL gets smaller as the section of the

flux rope is reduced. At Z = 3 Mm, the QSL reduce to a single central S line. The yellow field

lines (in Figure 5) are on each side of this central QSL. At the reference boundary (Z = 2 Mm,

Figure 6, upper left panel) this central S-shaped QSL is still present but is formed from a succession

of slightly wider islands. These islands correspond to a series of several quasi-connectivity domains

located right under the twisted flux rope. The red field lines of Figure 5 are embedded in these

regions. We also note in the rest of the domain the large number of small scale QSL which are

related to the fragmentation of the magnetic field.

The difference of maximum values of Q reached at the central QSLs, the difference in shape, and

the difference of sharpness of the QSLs, between the models can be explained by the fundamental

difference in how the flux ropes are built up. As indicated in Section 2.2, the initial setup of the

NLFFF model involves the insertion of the flux rope into a cavity in the magnetic field. At that

instance the flux rope is separated from the surrounding field by a pure separatrix surface, i.e.,

an asymptotically strong and thin QSL. During the process of relaxation, the edges of the flux

rope are smoothed: the separatrices no longer exist and the flux rope is now instead bounded by

very sharp and strong (finite) QSLs which are a remnant of the insertion process. The situation

in the MHD model is different. There, the flux rope is formed by smooth shearing motions and

the diffusion of the two smooth polarities. In the beginning the flux rope is surrounded with a

QSL of very mild Q values. As the shearing and cancellation progress, the flux rope builds-up,

stronger connectivity gradients are present between the inside of the flux rope and the outside and

the values of Q increases. The difference of Q between the NLFFF and the MHD model is thus a

consequence of this difference of treatment.
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In the MHD simulation the QSL distribution is simpler, because of the smoother distribution

of the field. It is however not as simple and symmetric as in the TD model, owing to the initial

asymmetry of the intensity of the magnetic polarities and the asymmetric shearing flows applied.

At Z = 0, the QSL footprints display an asymmetric double-J shaped pattern. As noted in Schrijver

et al. (2011) the hooked section of each J surrounds the flux rope, and the nearly straight parts

of the Js surround the short red arcades field lines (Figure 5 right panels) rooted on each side of

the PIL. Let us also note that the straight branch of the left J is located on the left side of the

straight branch of the right J-shaped QSL. At Z = 0.1, the two J’s have merged in a single QSL

with a S shaped structure. Above, at Z = 0.3 and Z = 0.6, (see Figure 6, lower right panels),

the double-J shaped pattern reappears. However the relative position of the ’J’ has changed. The

straight branch of the left J is now located on the right side of the straight branch of the right J.

The distributions of the QSLs in the NLFFF and MHD models therefore have strong similarities

with a single S-shaped contour in the center and wider structures above and below. At low altitude,

and in particular just below the twisted flux rope at Z = 3 Mm and Z = 0.1, a similar S-shaped

dominant QSL is observed in models. The effect of asymmetries are also respected as in both cases,

the right hook is less extended than the left hook. This is due to the fact that the right magnetic

polarity (the positive for the MHD model and negative one for the NLFFF model) is more compact

than the left one in both cases.

As one can see from the Q distribution at higher altitude, in both cases a region of low Q values

appears in the center, corresponding to the inner twisted flux rope, bounded by a thin QSL, which

highlights the sudden change of the connectivity properties. The separation in the QSL maps for

the MHD simulation remain small since the flux rope is thin, as discussed in the previous section.

The main difference is related to the fact that, at higher altitude, QSLs in the NLFFF model are

continuous while in the MHD model they consist of two ’Js’. However, if one imagines that one

could link the hook of the ’J’ with the straight part of the opposite ’J’, the QSL distribution in the

MHD model would be extremely similar to that in the NLFFF model. Indeed one can see in the

QSL distribution at Z = 26 Mm of the NLFFF model, two regions of lower Q along the main QSL:

one is located on the right part, around x = 360 and y = −140 and the other on the left branch

around x = 300 and y = −160. This QSL can be thus described as two ’J’ shaped structure of high

Q linked by two branches of lower values of Q. The QSL thus assume the same overall distribution

in the two models at high altitude. The reason for the difference might be due to the fact that the

flux rope in the MHD simulation is not as fully developed as in the NLFFF model.

The distribution of Q can be easily interpreted in the frame of the TD model. The main

QSLs are similar to those found earlier for symmetric flux rope models by Démoulin et al. (1996b);

Titov (2007). In Figure 6, the Log10 Q distribution of the NLFFF and the MHD models are

directly compared with QSL maps from a TD flux rope in and HFT configuration configuration

(left column). The polarities in the TD model are also smooth and diffuse which gives the diffuse

appearance of the QSLs. Here also, one observes the transition from a two-’J’ footprint at the

photospheric level, to an S-shaped structure above, which again splits into another two ’J’ shape
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at a larger height, similar to the MHD model and the NLFFF extrapolation (see also Figure 8 of

SBD12). The shape of the TD QSL resembles more the QSL from the MHD model. Nonetheless,

more twisted TD models (e.g. with Nt = 2) present a complete QSL which fully surround the

twisted flux rope. The TD models tend to confirm the above hypothesis that the difference of

distribution of Q at higher altitude between the NLFFF and the MHD models is linked with the

carried amount of twist. Below the HFT (top panel) the two J’s of the QSLs are separated slightly

in the TD and the MHD model while this is not so obvious for the QSLs in the NLFFF model due

to large complexity low down in the domain. One can notice the similarity between the QSL maps

shown in the second panel of Figure 6 given at the bottom boundary, and Figure 7 of Démoulin

et al. (1996b) and Figure 4 of Titov (2007).

4.3. QSL and Current Distributions

As noted in Section 1, QSLs are known to be the preferential sites for the formation of dense

current layers. In Figure 7 of SBD12, the correlation between the distribution of Q and currents

was already reported for the NLFFF model. However, the method employed highlighted a very

large number of QSLs. Figure 7 and Figure 8 present the distribution of |j| together with the

distribution of Log10 Q in different horizontal and vertical cuts for both data sets.

While in the MHD simulation the currents are induced dynamically by the boundary motions in

a line-tied atmosphere, in the NLFFF model, the current distribution is a product of the relaxation

process. The NLFFF model is static and hence the increased current density observed at the

locations of the QSLs is solely a consequence of the equilibrium torsion parameter along these

field lines that results from the relaxation process. The smoothness of the current distribution

increases in height. The current density is far from smooth low down in the corona corresponding

to the higher degree of fragmentation in the magnetic field. In fact below height of z=2 the current

density is highly influenced by the boundary flow imposed to support the flux rope. The currents

are much more diffuse in the NLFFF model while in the MHD simulation they are sharper and

more concentrated, which is to be expected for such a dynamical setup.

As also reported in a previous numerical study comparingQ and |j| distribution (see Savcheva &

van Ballegooijen 2009), in Figure 7 we also observe a very good agreement between the morphology

of the distributions of the squashing degree and the currents, at every height, in both models. In

both cases, the most intense current concentrations are located at a QSL. As noted by Wilmot-

Smith et al. (2009b, 2010), there is not however a one-to-one correspondence. Many QSLs are not

necessarily associated with a specific current sheet. This is expected as QSLs are only preferential

sites for current accumulation. However, a specific stress must be present at the QSL for currents

to accumulate. For a similar reason, more intense currents can be present where no high value of

Q is present and vice versa. The QSLs and current distributions match better in the MHD model,

while the NLFFF model displays strong QSLs where no strong current is present (e.g. Figure 7,

lower panel, upper right corner). The particular properties of the field motions play a dominant
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role in inducing current intensification at a specific QSLs. However, overall, the distribution of |j|

follows the shape of the QSLs. Currents highlight the location of the flux rope, since they lie at

the boundary of that structure in both cases. In both models, both for the QSL and the current

distribution, we observe that the current (and Q value) is stronger on the outside part of the curved

sigmoid elbows. The sigmoid shape is directly observed in the current distribution. This can help to

interpret the specific shape of the observed emission of these structures by integrating the current

density along the line of sight (as it was done in Archontis et al. 2009, ATDD10).

The link between currents and QSLs can also be seen in the vertical cross sections through

the flux ropes. The locations of the cross sections for both models is shown in Figure 10. In the

right panels of Figure 8, the cross section for the NLFFF model is taken in the plane of equation:

y+163 = 0.6(x−305) Mm, while the left panels correspond to the plane y = 0 of the MHD model.

These cuts correspond to the central section of the twisted flux rope in both models. In Figure 9,

the cut is done in the plane of equation: y+180 = 0.9(x−290) Mm for the NLFFF model while for

the MHD model it is of equation: y + 2.4 = 0.2(x + 0.1). They correspond to a section in the left

part of the flux rope, close to the ”hook” of the S shape. It is obvious from Figures 8 & 9 that the

strong QSLs for both models lie on the edge of the flux rope at the boundary between the flux rope

and the surrounding field. In the vertical current cross section for the NLFFF model exceptions are

the strong current in the bottom couple of cells in the plot - this is the remnant effect of the vertical

velocity imposed on the bottom boundary, as discussed in Section 2.2. The current distribution

in both models has a characteristic hollow core shape. Such current distributions in cross section

have been reported by Bobra et al. (2008); Su et al. (2011) in addition to SBD12.

The shape of the current distribution follows the most intense QSLs. In the NLFFF model one

observes several QSLs. In Figures 8 & 9, the QSL with the largest values of Q (> 1011) is located

in the center of the domain and presents an inverse teardrop shape in cross section. In the MHD

simulation, this tear drop structure is only partial, as the upper part only presents lower values of

Q. In Figure 8 there is a clear correspondence between the shape of this teardrop QSL and the

distribution of the currents. In both the MHD and the NLFFF models this inverse-teardrop-shaped

QSL, and the associated currents, trace the limits of the quasi-connectivity domain associated with

the twisted flux rope. Hence, computing the map of Q is a possible way to localize a flux rope

in a complex magnetic field. In Figure 9 there is also a good correspondence even though in the

MHD model there is not a complete match. The broad currents on the left are related to very mild

values of Q, while there is little current on the right side where a QSL with a median value of Q is

present.

One can also notice that the current concentration is stronger on one side of the flux rope, and

that the whole flux rope is slanted to one side in both cases (see Figure 8). This is most probably a

result of the asymmetry in the intensity and extent of the magnetic polarities. A common feature in

most observed active regions, the asymmetry in the magnetic field distributions has been achieved

purposefully in the setup of the MHD simulation (c.f ATDD10). The sharper current concentrations

are surrounded by more diffuse current which is associated with the blue haze in the QSL maps. As
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mentioned, the current system in the NLFFF model is diffuse by nature, while the diffuse envelope

of current in the MHD simulation is associated with the strongest parts of the diffuse polarities.

4.4. Hyperbolic Flux Tube

An interesting feature of the QSL and current maps in cross section is the inverted tear drop

shape of the flux rope. The main QSL wraps around the flux rope and crosses itself in the bottom

part of the flux rope at an HFT, which is essential for identifying this configuration.

In Figures 8, the most prominent currents are present just under the flux rope, at the base of

the tear-drop structure. One can see that these currents precisely correspond to the region of the

highest value of Q, the HFT at positions x ≃ −0.2 and z ≃ 0.1 for the MHD model and x ≃ −0.5

and z ≃ 3.5 for the NLFFF model. The squashing degree Q reaches 1022 and 108 at the HFT for

the NLFFF and MHD models respectively. As introduced in Titov (2007), for some parameters of

the TD99 model, the HFT is present under the twisted flux rope. The distribution of Q in such a

vertical cut of such an idealized flux rope is presented in Pariat & Démoulin (2012). Aulanier et al.

(2005b) presented an HFT from an MHD simulation resulting from a quadrupolar-like magnetic

field. The existence of the HFT in the MHD simulation was already noted in Aulanier et al. (2010)

and we present here the distribution of Q associated to this structure. An HFT, reaching such

high values of Q, is presented here for the first time in an NLFFF model based on observed data.

The bottom panel of Figure 8 highlights this structure: the HFT divides the domain in four quasi

connectivity domains in both cases. The different type of field lines of Figure 5 are located in

different quasi-connectivity domains. While the green lines of the twisted flux rope are above the

HFT, the red field lines are lying under it and the yellow field lines are located on both side. This

is similar to Figure 13 of SBD12 where this specific arrangements of the field lines in the vicinity

of the HFT is also discussed.

The second row of Figure 6 presents horizontal cuts at the height of the HFT in both models.

We observe that it is at the HFT that the QSL adopts an S-shaped pattern. The transition from

an S-shaped QSL to J-shaped QSLs above and below the HFT when observed in horizontal slices

on Figure 6 is related to the diverging branch of the QSL above and below the HFT on the vertical

cuts of Figure 8. In Figure 9, the shape of the main QSL is presented away from the central

region. In both the MHD and the NLFFF model, instead of an X-shaped structure, only a main

QSL is observed with weaker-Q branches extending from each side. This is in agreement with the

ideal shape of a HFT as presented in the cartoon of Equation (42) of Titov (2007): because of the

convergence of field lines inside the HFT, the width of two opposite high-Q branches of the HFT

are shrinking when the HFT is observed away from the center. The other two branches keeps a high

value of Q and the HFT appears mostly as a single QSL. While this feature is clearly observed in

the MHD model, it is a bit more difficult to notice it in the NLFFF model because of the complexity

of the field.
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In the NLFFF model, several other HFTs, in addition to the one below the flux rope are

present. Indeed, in a similar-but-more-general way than separatrices (Démoulin et al. 1996b),

HFTs lie at the intersections of two QSLs, at the junction of four quasi-connectivity domains. In

the bottom-right panel of Figure 9, on the left side of the flux rope, around x ∼ −10, z ∼ 25, as well

as in the top of the teardrop QSL in Figure 8, (middle right panel), around x ∼ −5, z ∼ 40, such

QSLs crossing are observed. In both cases, one can notice that higher values of Q, relatively to the

crossing QSLs, are present at these minor HFTs. Interestingly, one observes that in conjunction

with these HFTs, currents of higher intensities are also present.

The main HFT is nonetheless the one located below the twisted flux rope. This HFT indeed

clearly corresponds to the most intense currents in both the NLFFF model and in the MHD

simulation. Therefore this HFT is likely to be associated with explosive reconnection. Aulanier

et al. (2010) report that tether-cutting reconnection takes place between the J-shaped field lines in

the MHD simulation which pushes the flux rope higher up. This is demonstrated also in figures 7

and 12 in Mackay & van Ballegooijen (2006). The flux rope eruption in the simulation eventually

occurs at the location where the HFT is most elevated above the lower boundary. Although, the

NLFFF model is static we can also say that the HFT is lifted up the most in the middle of the flux

rope, where the B-class flare occurs as discussed extensively in SBD12.

BPSS have also been extensively employed to explain current sheets in flaring sigmoids (e.g.

Gibson et al. 2004; Archontis et al. 2009). From an observational point-of-view, the identification

of BPs is more straightforward than the identification of an HFT in flux rope configurations (e.g.

Green et al. 2011). However BPSS seem to appear more readily in emerging flux simulations or

with dataset with smooth magnetic field (e.g. analytical fields, field reconstruction using low-spatial

resolution magnetograms).

The existence of an HFT has been discussed by Kliem et al. (2004) in the context of an erupting

kinking flux rope. Green et al. (2011) employ the analysis done by Gibson & Fan (2006) to analyze

a flaring sigmoid. According to these authors an HFT is the probable configuration underlying a

region that undergoes a full flux rope expulsion. This is not surprising in the context of the standard

flare models (Moore et al. 2001). Although the important feature was not specifically identified as

an HFT, this standard X-line-like configuration appears in every standard flare cartoon.

SBD12 reported that the sigmoid produced an earlier flare on Feb 7. Although the sigmoid had

just started to build-up and the free energy was still increasing, the region produced an eruption a

few hours after an HFT topology appeared in the models. Su et al. (2011) reported similar inverted

tear drop shape in their current distributions in a marginally stable NLFFF model just preceding

a flare in a non-sigmoidal region.

Here, we show that QSL analysis proves to be useful for identifying HFTs. We argue that the

HFT is really the feature that identifies the pre-eruption topology for both systems. The fact that

it is the preferential site for formation of the strongest current sheets supports the conclusion that

it is the most probable location for reconnection.
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4.5. The Torus Instability

In the MHD simulation, the tether-cutting reconnection at the HFT is not directly responsible

of the eruption but increases the flux in the twisted rope and enhances further its elevation. As

the flux rope rises it enters a domain where the strength of the overlying potential field falls-off

quickly with height. In this region the upward motion of the flux-rope cannot be restrained any

more by the magnetic tension of the arcade. ATDD10 showed that when the flux rope axis reaches

the height at which the decay index of the arcade n = −∂lnB/∂ln z is above a certain threshold,

it becomes unstable. ATDD10 found that the threshold was equal to ntresh = 1.5, in agreement

with the theoretical calculation of the Torus instability (Kliem & Török 2006). Figure 11 (right)

presents the profile of the magnetic field in the potential arcade and the decay index versus height

at t = 120tA in the MHD simulation, when the flux rope axis is located at z = 1.9 and the decay

index n = 1.5 is reached at z = 2. At this time, the flux rope is already in the torus instability

domain as discussed by ATDD10. Our present analysis of the MHD simulation is based on the

t = 90tA at which time the height of the axis of the flux rope is equal to z = 0.8. This height

is deduced from the plot of the magnetic field intensity versus height in the center of the domain

(Figure 11). We assume that the flux rope axis is at the height where the magnetic intensity has

a local maximum (∂Btot/∂z changes sign). At t = 90tA the flux rope is lower than the domain of

the Torus instability regime.

As the NLFFF model is not dynamic it is not possible to determine when and if the flux rope

enters the torus instability domain during the eruption. Also, it is unclear where the axis of the

flux rope is located relative to the height where n = 1.5. However, we can still perform the same

torus instability diagnostic of the envelope potential field. The potential field is calculated prior

to the insertion of the flux rope from the LoS magnetogram and the cut shown in the figure is at

x = 300 and y = −170. Figure 11 (left) shows the variation of the arcade field intensity and the

decay index with height for the NLFFF model. The decay index becomes larger than n = 1.5 for

z > 39 Mm. The vertical cross sections through NLFFF flux rope, Figure 8, show that the apex

of the strong teardrop QSL which bounds the twisted flux rope is at z = 40 Mm. In Figure 11,

upper row, one can see a vertical cut through the flux rope field taken at the same position as the

cut through the potential field. Note that the local maximum of the field intensity in the flux rope

is at z = 19 Mm. We find that, at 06:41 UT, one hour before the beginning of the eruption, the

axis of the flux rope is below the torus unstable domain. However, the upper part of the flux rope

is already within the height range at which the torus instability can set off.

ATDD10 states that the 10% of flux cancellation that the system experiences before the erup-

tion is not enough to diminish the magnetic energy in the arcade sufficiently. In the observed

region, we observed a cancellation that concerns 50% of the magnetic flux (see Section 4.1), which

is enough to sufficiently reduce the strength of the overlying arcade. However, the cancellation

stops a few hours before the eruption, which implies that the profile of the potential arcade has

been suitable for torus instability for many hours before the eruption, just requiring an expanding

flux rope. We have inferred that the HFT exists in the region about an hour before the eruption.
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So, as discussed SBD12, reconnection at the HFT can potentially raise the flux rope into the torus

instability domain. The combination of the reduced overall strength of the potential arcade and

the suitable decay index at the edge of the flux rope lead us to infer that the torus instability is the

most likely condition that allows the subsequent ascent of the flux rope and the development of a

CME following the flare at 7:40UT. This has been dynamically shown in the MHD simulation, as

discussed in ATDD10, where reconnection at the HFT enters a dynamical feedback with the torus

instability in allowing the flux rope to erupt into a CME.

5. Summary and Discussion

Numerous MHD models have been employed to explain the observed X-ray structure of sig-

moidal regions and to understand what conditions lead to their development and eruptive behaviour.

Many of these models rely on the presence of twisted flux ropes as discussed in the Introduction.

The Titov & Démoulin (1999, TD) construction of flux rope embedded in potential field is partic-

ularly useful since it offers simple analytical framework to compare to the more complex structures

obtained by numerical studies relying on this model. These models do not agree about the pro-

cess through which the flux rope develops or what instability leads to loss of equilibrium and an

eruption. Although just loosely constrained by the main observed traits in solar active regions,

dynamic MHD simulations have the strong advantage that they can follow the evolution of the

simulated configuration and identify the factors that facilitate the production of a flare or CME.

On the other hand, static data-driven magnetic models and extrapolations, although constrained

by magnetogram data, provide only glimpses into the magnetic field structure of sigmoidal regions.

These two main methods for studying the structure and dynamics of solar active regions cannot be

easily reconciled since they rely on very different initial assumptions. However, if these methods are

made to work together, this can be beneficial to arriving at a consistent picture for the evolution

and eruption behaviour of solar active regions.

We have presented a comparison between the dynamical MHD simulation of Aulanier et al.

(2010, ATDD10) and a static NLFFF model from Savcheva et al. (2012, SBD12) of the 2007

February 12 sigmoid. These models, although based on fundamentally different ideas, both study

long-lasting sigmoids in decaying active regions that undergo a flaring event and produce CMEs.

While the sigmoidal flux rope in the MHD simulation is produced from shearing a potential arcade,

the flux rope in the NLFFF model is inserted into a potential field and subsequently relaxed to

a force-free state. In the process of comparison we aimed at addressing long-standing questions

of sigmoid studies, i.e. how sigmoids are formed, how they evolve and what conditions lead to

their eruptions. We use the MHD simulation as the context which provides information about the

dynamics of the system, and the observations and the model provide specific observables. In the

process, we managed to arrive at a consistent picture about the evolution of a sigmoidal region and

identify specific topological tracers of the magnetic configuration which can be used to pinpoint

probable reconnection sites.
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First, the observations and the MHD model showed that flux cancellation and shearing motions

must play an important role in the formation of the sigmoidal structure in the process of which

the sigmoids builds shear and magnetic helicity (Green & Kliem 2009; Green et al. 2011; van

Ballegooijen & Martens 1989). Major part of the current study was concerned with the magnetic

field topology and current distributions in both systems. We first examined the existence of Bald

Patch regions (Titov et al. 1993) - see Section 3.1 . While in the MHD model no BPs were present,

the NLFFF extrapolation presented a extremely large number of such topological structures. The

intermittency of the BPs is partly due to the noise in the MDI magnetogram and partly to the large

degree of fragmentation in the photospheric field distribution. Idealized model and simulation of

sigmoid regions based on twisted flux tube (Titov & Démoulin 1999; Gibson et al. 2004; Gibson &

Fan 2006; Archontis et al. 2009) focus on the possible existence of extended Bald Patch regions.

We argue that with higher and higher resolution observations, it may become difficult to actually

detect BP and HFT structures in photospheric vector magnetograms due to the intrinsic complexity

in the photospheric flux distribution and the noise in the magnetograms. Also, once an HFT is

formed, BP regions will no longer be present.

In order to have a complete picture of the topology in the full domain we have computed the

distribution of the squashing factor, Q (Titov et al. 2002) in different cross sections of the domain,

following the methodology put forward by Pariat & Démoulin (2012). Regarding the NLFFF

model, this study presents the first computation at high spatial resolution (Section 3.2), at high-Q

resolution, of the topological structure of an NLFFF describing an observed sigmoid. Despite their

very different approaches, we revealed that both models present multiple topological similarities.

The first result of our study is that, thanks to vertical and horizontal cuts (Section 4.2),

it becomes simple to detect the location of the twisted flux rope in the domain. In both models,

similarly to the TD model, the main QSL (highQ value) lie on the edge of the flux rope and separates

it from the surrounding field. In the NLFFF model, despite the complexity of the magnetic field, the

3D shape of the QSL follows a similar pattern to the MHD simulation, which recalls the idealized

structure analyzed in the TD model by Titov (2007). In models, the photospheric QSL presents a

double ’J’-shape which can explain the shape of the flare ribbons associated with such structures

(e.g. Schrijver et al. 2011). At higher altitude, the main QSL, in horizontal cuts, takes the shape

of a single QSL which eventually evolves in a ”connected-J” structure higher up.

The underlying reason for this 3D geometry is the presence of an HFT (Titov et al. 2002) just

under the twisted flux rope. The existence of this structure was originally suggested in both the

MHD and NLFFF models, respectively in ATDD10 and SBD12. The vertical cross sections of the

distribution of Q in both the MHD model and the NLFFF model allow us to very clearly identify

this structure. The HFT is therefore a robust topological feature present in two models close to

eruption. In SBD12, the authors infer the existence of the HFT in this configuration based on low

resolution calculation of Q. However, here for the first time we demonstrate the existence of the

HFT (in terms of being a locus of extremely high Q values) as a consequence of the much higher

resolution calculation of the squashing factor Q. In the MHD model one can directly observe that
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reconnection takes place at the HFT, but the values of Q that are reached at the HFT in the NLFFF

model speak to probable reconnection as well (tentatively Q > 106 for reconnection, Démoulin et al.

1996a). In both the MHD and the NLFFF models, the HFT exists in the configuration some time

before the eruption - one hour for the NLFFF model (SBD12), and ∼ 30tA in the MHD simulation.

It is not clear what conditions on the real Sun lead to the start of reconnection at the HFT and

for how long it may be stable before explosive reconnection sets in. In the presence of suitable

plasma parameters, the thinning of the current sheets at the HFT and the torus instability as a

consequence of the expanding flux rope, will turn this configuration from a storage to a release

location.

We then showed that maxima in the current distributions coincide with main QSLs in both

cases (Section 4.3), although the origin of these currents is different in both models. As theoretically

expected, we observe a good correspondence between the distribution of electric currents and the

squashing degree in different type of cross section of the numerical domains. The most intense

currents are observed to be located in the close vicinity of the HFT. The HFT presumably plays

an important role in the dynamic of the eruption.

As it was discussed in SBD12, where the whole evolution of the observed sigmoid over one

week was analyzed, the field showed BP topology for many days until the flux rope was elevated

into an HFT configuration and extended BPs ceased exist. Reconnection at such BPs was observed

in the MHD simulation at earlier times, but this reconnection is not responsible for the eruption.

Eventually tether-cutting reconnection at the HFT causes the continued elevation of the flux rope

but seems not to be the sole contributor to the eruption of the flux rope.

Finally we compare the elevation of the NLFFF flux rope with the magnetic field decay index,

identified as a key element for the development of the torus instability (Kliem & Török 2006). At

some height, which we determine in this work, the elevated flux rope enters the torus instability

domain where the decay index of the potential arcade becomes 1.5. This was already shown in

ATDD10, but here we demonstrate that such conditions are nearly reached within the flux rope

in the NLFFF model. Together, these models suggest that the reconnection at the HFT and the

torus instability act together for producing an eruption.

Here we have shown that models we use begin to approach the complexity of the real solar

atmosphere. However, we still use the two models separately and infer the connections between

them in order to build a more consistent picture of the evolution of a sigmoid. In this sense,

a future improvement involves bridging the gap between idealized dynamical MHD simulations

and magnetic models based on actual data. One approach might be for an MHD simulation to

use realistic time-dependent boundary conditions based on observed photospheric magnetic field

distributions. The initial condition and time evolution of such a simulation may vary which will

also vary the mechanism for producing, evolving, and erupting the flux rope. Topology analysis of

such a model combined with the observed properties of active regions may then provide constrains

on which features indicate probable eruptive behavior and where an eruption might occur. The
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increased resolution and dynamic range of EUV, X-ray, and magnetogram data (e.g. the Solar

Dynamics Observatory Su et al. 2011) will also provide much better constrained models which

represent the 3D magnetic field structure of solar active region more realistically.

Hinode is a Japanese mission developed, launched, and operated by ISAS/JAXA in partner-

ship with NAOJ, NASA, and STFC (UK). Additional operational support is provided by ESA,

NSC (Norway). This work was supported by NASA contract NNM07AB07C to SAO. The QSL

computations have been performed on the multi-processors TRU64 computer of the LESIA.
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Fig. 1.— An XRT image of the sigmoid taken at 06:41UT, Feb 12, 2007 (left). Sample field lines

traced from the corresponding best fit NLFFF model. The grayscale image correspond to the

distribution of the vertical component of the magnetic field in the observer frame. The pink and

cyan isocontours around the white and black patches respectively correspond to Bz = [30, 150, 475]

(resp. [−30,−150,−475]) G. The cyan field lines belong to the potential arcade. The yellow J-

shaped and the green S-shaped field lines are part of the flux rope, and the short red field lines lie

under the flux rope.
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Fig. 2.— A plot of positive magnetic flux with time between Feb 6, 06:00 UT and Feb 13, 18:00

UT, 2007. The flux is measured in a 192′′ × 192′′ area centered at the sigmoid.
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Fig. 3.— Progressive diffusion of the polarities in the MHD simulation at t = 0, 40, 65, & 90 Alfvén

times. The pink (resp. cyan) isovalues of the vertical component of the magnetic field are the same

for each time and equal to Bz = [2, 4, 6, 8, 10, 12, 14, 16] (resp. [−2,−4,−6]). While the green field

lines rooted close to the polarity inversion line (orange continuous line) are strongly sheared the

yellow potential field lines are less affected by the boundary drivers.
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Fig. 4.— Distribution of bald patches (plotted in yellow) on the photosphere (left panel) and field

line dips at Z = 6 Mm. The background distribution of Bz and the corresponding isocontours for

the NLFFF model is the same as in Figure 1. One distance unit corresponds to 1043 km. The left

panel demonstrates that there are numerous BPs in the photosphere that are not associated with

the flux rope, while the flux rope dips lie above the photosphere (right panel).



– 36 –

Fig. 5.— Top views (top panels) and side views (bottom panels) of representative field lines for the

best fit NLFFF model (left panels) and the MHD simulation (right panels). The distribution of

Bz and the corresponding isocontours for the NLFFF model (resp. MHD simulation) is the same

as in Figure 1 (resp. equal to ±[0.5, 2, 7]).The S-shaped field lines are given in green, the J-shaped

one in yellow, the potential arcade is in blue and the short field lines that lay under the flux rope

are given in red.
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Fig. 6.— Distribution of Log10 Q in different horizontal slices for the NLFFF model (left), the

MHD simulation (center), the TD model (right). The height at which the maps are calculated are

given on the plots. The saturation level for the plot of Q is equal to 1013 for the NLFFF model,

106 for the MHD simulation and 105 for the TD model.
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Fig. 7.— QSL maps (right panels) for two different heights and corresponding current density,

|j| distributions (left panels) for the MHD simulation (upper four panels) and the NLFFF model

(lower four panels). The color scaling of Q is similar to Figure 6. The saturation level for the plot

of Q is equal to 1013 for the NLFFF model and 106 for the MHD simulation.
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Fig. 8.— Distribution of the current density (top row) and Log10 Q (middle row) in cross sections

through the flux rope at the location of the HFT for the NLFFF model (right) and the MHD

simulation (left). The cross section is identified as ”flare cut” in Figure 10. A blow-up of the area

around the HFT is given in the bottom row. The color scaling of Q and |j| is similar to Figure 7.
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Fig. 9.— Same as Figure 8 but for a cross section in the lower elbow. The cross section is identified

as ”elbow cut” in Figure 10.
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Fig. 10.— Same as the top panels of Figure 5 with overlaid black lines at the locations of the two

cross sections: ”flare cut” for Figure 8 and ”elbow cut” for Figure 9.
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Fig. 11.— Upper row: Plot of the magnitude of the total magnetic field including the flux rope for

the NLFFF model (left) and the MHD simulation t = 90 (right). The dotted lines mark the the

axis of the flux rope, i.e. where the derivative of the the total magnetic field changes sign. Central

row: Plot of the magnitude of the total magnetic field in the potential arcade vs. height for the

NLFFF model (left) and the MHD simulation t = 90 (right). The corresponding decay index is

given in lower row. The dotted lines mark the height at which the decay index reaches the critical

value of 1.5.


